

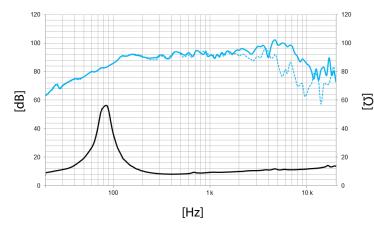
KAS6WNd

LOW & MID FREQUENCY TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	165	mm	6,5 in
Rated impedance			8 Ω
Minimum impedance			7,9 Ω
Power capacity ¹			170 W _{AES}
Program power ²			340 W
Sensitivity	94 dB	1W /	$1m \mathbin{@} Z_N$
Frequency range		90 -	8.000 Hz
Voice coil diameter	50,8	mm	2 in
BI factor			11,2 N/A
Moving mass			0,014 kg
Voice coil length			9 mm
Air gap height			7 mm
X _{damage} (peak to peak)			20 mm

THIELE-SMALL PARAMETERS³


Resonant frequency, f _s	85 Hz
D.C. Voice coil resistance, R _e	6 Ω
Mechanical Quality Factor, Q _{ms}	3,7
Electrical Quality Factor, Q _{es}	0,36
Total Quality Factor, Q _{ts}	0,33
Equivalent Air Volume to C _{ms} , V _{as}	7 I
Mechanical Compliance, C _{ms}	250 μm / N
Mechanical Resistance, R _{ms}	2 kg / s
Efficiency, η ₀	1,2 %
Effective Surface Area, S _d	0,014 m ²
Maximum Displacement, X _{max} ⁴	3 mm
Displacement Volume, V _d	14 cm ³
Voice Coil Inductance, Le	0,2 mH

MATERIALS

Voice coil winding	Aluminum
Voice coil former	Glass fiber
Spider	Conex
Magnet	Neodymium
Cone	Paper
Frame	Die cast aluminum

MOUNTING INFORMATION

Overall diameter	187,5 mm	7,4 in
Bolt circle diameter	172 mm	6,8 in
Baffle cutout diameter:		
- Front mount	146 mm	5,7 in
Depth	77,5 mm	3,1 in
Net weight	1,6 kg	3,5 lb
Shipping weight	1,8 kg	4,0 lb

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

Notes

This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when thw driver is transferred to the production line and manufactured in big quantities.

¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^4}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{aq} is the air gap height.